Quantification of Transit Train Activity Data for Energy Consumption Estimation

Presenter: Weichang Yuan
Advisor: Dr. H. Christopher Frey

Objective
- For a given rail system, develop an approach to quantify trip-based transit train data for energy consumption estimation.

Introduction
- Fossil fuel energy consumption leads to emissions of criteria pollutants, hazardous air pollutants, greenhouse gases (GHG).
- Energy consumption characteristics for each rail system, route, and passenger trip need to be quantified to identify ways to improve energy efficiency.
- The General Transit Feed Specification is an open source format that allows public transit agencies to provide transportation schedules and geographic information to developers.

Methods
- The method is based on GTFS data and real-time transit tracking.
- Case study for the Washington Metropolitan Area Transit Authority (WMATA) Metrorail system.
- GTFS-Static feed: ✓ Data on stops, routes, trips, and schedules.
- GTFS-Realtime feed: ✓ Real-time train positions were reported every 7 to 10 seconds by WMATA.

- GTFS-Realtime dwell time derived dwell time
 ✓ GTFS-Realtime data were downloaded on randomly selected 17 days in 2016 and 2017.
 ✓ Rush hour: 8:00 a.m. – 10:00 a.m.
 ✓ By extracting occupancy time of the track circuits that represent station stops, dwell times were derived for multiple routes and station stops.
- Bias-corrected based on comparison to field measurements.
- Field measurement:
 ✓ A field trip was made to Washington D.C. during 12/13/2016 to 12/17/2016.
- Multiple rides of each route were taken with GPS receivers.
- One Hz speed trajectory data were collected for above ground segments of the six routes.
- Dwell time data were collected for multiple stops of the six routes for validation purpose.
- Speed trajectory processing

Results
- Example daily number of one-way trips of the blue line on October 12th, 2015: 174

<table>
<thead>
<tr>
<th>Route</th>
<th>One-way travel time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>63</td>
</tr>
<tr>
<td>Blue</td>
<td>64</td>
</tr>
<tr>
<td>Green</td>
<td>47</td>
</tr>
<tr>
<td>Orange</td>
<td>57</td>
</tr>
<tr>
<td>Yellow</td>
<td>36 (non-rush)</td>
</tr>
<tr>
<td>Silver</td>
<td>48 (Huntington - Greenbelt)</td>
</tr>
</tbody>
</table>

Legend
- GTFS stops
- Reference stops
- Green
- Orange
- Red
- Silver
- Yellow

Table 1. Comparison of measured dwell time and GTFS-Realtime derived dwell time.

<table>
<thead>
<tr>
<th>Average (s)</th>
<th>Standard Deviation (s)</th>
<th>Sample size</th>
<th>95% confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>6</td>
<td>120</td>
<td>27 29</td>
</tr>
<tr>
<td>28</td>
<td>9</td>
<td>120</td>
<td>40 49</td>
</tr>
</tbody>
</table>

Table 2. Examples of average speeds. Dwell times were derived from GTFS-Realtime and bias-corrected.

Trip | Distance (mile) | Average speed (mph) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Without dwell time</td>
<td>With dwell time</td>
</tr>
<tr>
<td>Federal Triangle – Metro Center</td>
<td>0.31</td>
<td>18.82</td>
</tr>
<tr>
<td>Rosslyn – Arlington Cemetery</td>
<td>0.90</td>
<td>27.10</td>
</tr>
<tr>
<td>Van Dorn St. – Franconia-Springfield</td>
<td>3.10</td>
<td>31.04</td>
</tr>
</tbody>
</table>

Conclusion
- A method combining GTFS data and transit tracking using GPS receivers can be used to collect transit train data for energy estimation on trip basis.
- Validation and adjustment are recommended for GTFS-Realtime data.
- Accurate dwell time is needed to accurately estimate mean speed between stations.
- Speed trajectory collected using GPS receivers needs post-processing.
- The trains typically accelerate to cruising speed, maintain a typical cruising speed, and decelerate in a similar manner for a given segment from one stop to the next.
- Acceleration is related to speed in the WMATA Metrorail system.

Acknowledgement
- The work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR33339-Z7218002.
- Yaping Chen provided the 1 Hz position data collection during the field trip.

Disclaimer: "The information, data, or work presented herein was funded in part by an agency of the United States Government. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."